skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hoque, Sanzida"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. New breed of applications, such as autonomous driving and their need for computation-aided quick decision making has motivated the delegation of compute-intensive services (e.g., video analytic) to the more powerful surrogate machines at the network edge–edge computing (EC). Recently, the notion of pervasive edge computing (PEC) has emerged, in which users’ devices can join the pool of the computing resources that perform edge computing. Inclusion of users’ devices increases the computing capability at the edge (adding to the infrastructure servers), but in comparison to the conventional edge ecosystems, it also introduces new challenges, such as service orchestration (i.e., service placement, discovery, and migration). We propose uDiscover, a novel user-driven service discovery and utilization framework for the PEC ecosystem. In designing uDiscover, we considered the Named-Data Networking architecture for balancing users workloads and reducing user-perceived latency. We propose proactive and reactive service discovery approaches and assess their performance in PEC and infrastructure-only ecosystems. Our simulation results show that (i) the PEC ecosystem reduces the user-perceived delays by up to 70%, and (ii) uDiscover selects the most suitable server–"accurate" delay estimates with less than 10% error–to execute any given task. 
    more » « less